4t^2+9t^2=9

Simple and best practice solution for 4t^2+9t^2=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4t^2+9t^2=9 equation:



4t^2+9t^2=9
We move all terms to the left:
4t^2+9t^2-(9)=0
We add all the numbers together, and all the variables
13t^2-9=0
a = 13; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·13·(-9)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{13}}{2*13}=\frac{0-6\sqrt{13}}{26} =-\frac{6\sqrt{13}}{26} =-\frac{3\sqrt{13}}{13} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{13}}{2*13}=\frac{0+6\sqrt{13}}{26} =\frac{6\sqrt{13}}{26} =\frac{3\sqrt{13}}{13} $

See similar equations:

| 6x^-19x-7=0 | | 9y+2=-8(y+4) | | -350=5(7x-7) | | 3(u+4)-5u=2 | | -8w+6(w-3)=-2 | | 6(-5x-13=-228) | | 6(-5x-13=-228 | | 5(v+7)+4v=-10 | | 3x+54=3x | | 402=6(-9x-5) | | 10+3b=7b-2 | | 8x^2-600x+5625=0 | | -(5x/3)+1=21 | | d-4+2=3d+1d | | (5x+6)+79=180 | | 10-3k=7k | | -7(10x+11)=-637 | | -4n=4-6n | | (w−6)(8w+5)=0 | | -9h=3-10h | | 4x-18=x=3 | | 10+1x=5x-2 | | -t-9=8 | | 6(x+5)+1=55 | | -710=10(-9x-17) | | 4x+25=-75 | | -x-2x=-7x | | X-2=12+2x | | 6(x-6)+5=-67 | | -x-2x=7 | | 2u-9=12-u | | -6k=-5k+4 |

Equations solver categories